

ELIZADE UNIVERSITY ILARA-MOKIN ONDO STATE

FACULTY: Basic and Applied Sciences

DEPARTMENT: Physical and Chemical Sciences

FIRST SEMESTER EXAMINATIONS 2018/2019 ACADEMIC SESSION

COURSE CODE: PHY 403

COURSE TITLE: ELECTROMAGNETIC THEORY 11

DURATION: 2 HOURS

CAR BORG

HOD's SIGNATURE

TOTAL MARKS:

Matriculation Number:

INSTRUCTIONS:

- 1. Write your matriculation number in the space provided above and also on the cover page of the exam booklet.
- 2. This question paper consists of 2 pages with printing on both sides.
- 3. Answer all questions in the examination booklet provided.
- 4. More marks are awarded for problem solving method used to solving problems than for the final numerical answer.
- 5. Box your final answers.
- 6. Attempt any 4 of the 6 questions

- la(i) Give three properties of electromagnetic waves and three applications of Maxwell's equations.
 - (ii) Write the Maxwell's equations in (a) Point form and (b) Integral form in free space set.
- b. Show that for an Electromagnetics wave travelling in vacuum
 - (i) There is a definite ratio between the magnitudes of E and B
 - (ii) The speed, $V = 1/\sqrt{\epsilon_{0\mu_0}}$
- 2a(i) Starting from Maxwell equations in a vacuum show that

$$\nabla^2 E - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = 0$$
 (wave equation)

- (ii) What is Polarization and Magnetization effect in Macroscopic media and state their respective effect on electric and magnetic field
- b. In free space, $E_{(z,t)} = 10^5 \text{ Sin (wt } \beta z \text{)} a_y \text{ V/m}$. Obtain $H_{(z,t)}$
- 3a(i) State snell's Law as applicable to an electromagnetic wave
 - (ii) Write short note on (a) Parallel polarization (b) perpendicular polarization
- b.) An electromagnetic wave travels in free space with the electric field component $E_s = 200e^{j(0.766y+0.5z)ax} V/m$.

Determine (i) ω and λ (ii) The magnetic field component. (iii) The time average power in the wave.

- 4a(i) Explain briefly what is meant by Poynting Vector.
 - (ii) Starting from the Maxwell's equations obtain the expression for the poynting Vector of a region with conductivity σ .
 - (b) Given that $A = 20Cos(10^6t 20x + 30^0)$ and $B_s = \left(\frac{40}{j}\right)_{ax} + 30e^{\frac{j2\pi x}{3}}$ ay Express A in phasor form and B_s in instantaneous form.
- 5 (a) (i) Define attenuation constant α and state its unit.
 - (ii) What is the skin depth and show that the skin depth is

$$\delta = \frac{1}{\sqrt{\pi f \mu o}}$$

(b) State the Maxwell's equation in a linear, isotropic, homogeneous, lossy dielectric medium that is charge free $(\rho_{\nu} = 0)$, and hence show that

$$\nabla^2 H_s - \gamma^2 H_s = 0 \quad \text{(Helmholtz's equation)}$$

- 6 a. What is meant by Electromagnetic Spectrum
 - b.(i) What is a Lossy material
- (ii) Write the expression for the wavelength in a lossy material (iii) A radiation has a frequency of 1000MHz. Find its wavelength in medium of relative permittivity 82 and resistivity 1.8 Ω m.